UnderStand Scala Comparing With Java
Java & H#E4 5 2 L1 L Y Scala #FfES 5

Masato Tsuchiya 2010/04

The attempt to understand Scala from implementing the same problem by Scala and
Java is described. The problem is the simulation of digital circuit shown as sample [1].
We convert single and multi- thread case from Scala to Java. Next, we implement better
parallel method where circuit elements directly communicate. And last, we implement
this method using Scala and compare Scala and Java. The implemented programs are

stored in simulation.zip. The directory of program is shown by [...].

[l LR % Scala & Java OMJ5 THIELTHZ LIZLY Scala 2B 272 il
N2, TIT, MY IV E LTRRENET VA NVEIRO Y 23 2 Lb—a U1 e
Lze £F, VoIV TF ALy RO —A% Scala 7°5 Java I[ZA#H L=, WiZ[A]
WERDEHE I =ar—2a VT D WHETHERmWHIEELFEE L., &BRIZZOHE
% Scala TIHIEL T Java & Scala Z It L7z, FHEL=7 17 7 Ak simulation.zip
WKL TH D, LT, 7uZ 7805657 417 N —%[..1TxRT,

Case 1. Single Thread [simulation/java/single]

This case is single thread and conversion from Scala([1] 18.3 Case study: Discrete
event simulation) to Java. The closure of delayed execution can replace by the command
pattern in Java. The interface of command is Actor. Anonymous class which implements

Actor is useful to avoid increment of tiny class.

= ARART 4— B AR bR 2 b —v 3 (1] 183 F % Java ICEMAL- T 0
TLThD, BIEFEI TSNS/ n—Y XYk a~vy RN — (@& %2 52 & C, Scala 7
077 h% Java [CEMAT A Z ENTEZ, 22T, 2< 2 NI interface Actor % 3E3E
L7V TATHD, Actor 2FHEET LML T ATHLa~vy ReffH LT, hN&ks 7
AW Z 2N E 9 IZ LT,

Case 2. Multi Thread [simulation/java/multi/org]

This case is multi thread and conversion from Scala ([1] 30.6 A longer example:

Parallel discrete event simulation) to Java. But thread is fixed to an instance and is not

recycled. The Actor of Scala is similar to Unix process communicating by message
because Unix process is shared nothing model. All instances which are executed multi
thread have an input queue. The queue must be thread safe. We use

java.util.concurrent library.

KIARBEZ2 Y T L Bl A X by 2 2 b —3 3 (1] 80.6 4 Java (S L7-7 1
7T KT b, 1277 L, Thread 1[I ED A v A X L AZEE SN T T, BAHA S AR,
Scala @ Actor |IA v E—VHEEEMFEH L Unix KB~ LVvFTakA0rars
LET BN TND, 28725 Unix OB RAFv 2T —RFvy 7 ThiHND,
~IVF ALy RTEMET 54 VA X L AZTIZEA LYy RE—TRZEF 22— 0ETH
%, Z ZTlX java.concurrent 7 A 77 U —%&fEH L7,

Case 3 Direct communication [simulation/java/multi/adv]

This case is also multi thread. But, all circuit elements (Wire, Gate and Probe)
directly communicate. In Case 2, Clock is a hub. And all circuit elements only

communicate to Clock. The thread of Clock is heavy duty and may be bottleneck.

] 1% 32 3% (Wire,Gate,Probe) N E 2181245 Java (2 X% Multi Thread 72 77 AT
5, Case 21X Clock MDHEEDNTIZ/20 , FRERNEEBRET L L1y, 20k
ETIE Clock DALy ROAMPE LR MVRy 712508 LAV,

The analysis is important that three are two kind of message: control and signal.
Circuit elements communicate using signal. Only Clock sends control to circuit
elements and receives response. Clock is still a hub with control. But, Clock never send
and receive signal. The concrete classes of control are Ping/Pong(synchronization),
Start/Stop. The concrete classes of signal are SignalChanged and SetSignal.
SignalChanged is sent from Gate to Wire. SetSignal is send from Wire to Gate and
Probe. We introduce abstract class: Simulant which is able to receive signal and control.

Clock and circuit elements are subclass of Simulant.

Ay —VEHIE LGSO 2/ENH L oITERETH S, RIRERIIME 2L a3
=al—3a 9%, Clock OASHIHZEIREEFRIZHE L, [EEEZEFR 1T Clock (THilfH %
BIEST LD, 2F 0, HIENCBEL TIE, KK, Clock BN T7I272 5, HlllOESL Y Z 2%
Ping/Pong(synchronization), Start/Stop Th %, FHDHEHG 7 7 XX Wire 705 Gate
& Probe (265415 SignalChanged & Gate 705 Wire (25545 SetSignal Th

Do ZTIZTIE, HIEEETEZETE LR 7 A Simulant %38 AL T, Clock & [FI#E
H# % Simulant OV 7 X A L LT,

The behavior of input queue for signal and control is different. If there is no control in
input queue, the thread accessing the queue must be blocked. If there is no signal in
input queue, the thread accessing the queue should not be blocked. So, we use

LinkedBlockingQueue for control and ConcurrentLinkedQueue for signal.

ZEFX 2 —OIMEICBWTES EHIEIIE D, ZEX 2 —IZH#EO A v E—UR7R0T
XA LY RiZ7ry 7 3N ÐD, —H, ZEF2—IEZFFOA v E—UR70
GAEICIFAL Yy RiZ7 ey 7 ENHXETERY, Zokd, HfHOZEx 2 —I12iF
LinkedBlockingQueue, 1§75 D%(5% = —I2/% ConcurrentLinkedQueue %M L 7=,

Ping has current time. When circuit element receives Ping from Clock, it exhausts all
signals which have time before or equal current time from ConcurrentLinkedQueue,
and changes self state or sends signal to other circuit element discriminating signal.

After all signals are done, it sends Pong to Clock to notify done.

Ping [ZIZBRZINE TN TV D, Clock 705 Ping #%(5 L2 R BEE T ZEF 2 —
(ConcurrentLinkedQueue)lZ & 21575 DWW, BIRFZ X 0 LR ORZ 263 51575 % 2 THL
DL, EHE#N L CTHOREBEZZEIE L0MDREIRERIEFEHET D, 2T
DIETDIEP LT L7z 5, Clock (2 Pong #i{E L CAEOK T ZMT 5,

Clock stops simulation. Pong has maximum delay at circuit element. Therefore

The time to stop is current time plus maximum delay of all Pong.

Clock ¥y 22l —ya 2K TEEDH, Z2TlE, MIKEZEORILERF%Z Pong |25
Wiz, #& TR HNITEERER] D f KA A2 B ER TN 2 72 R T 5,

Clock is an infrastructure for circuit elements. All circuit elements need Clock.

We inject an instance of Clock to all circuit elements by Spring AOP(@Configurable).

Clock [ZRIBEHRDA 7T AT 7 F ¥ —ITHE L, RTCORKERPLE L T2,
Z Z TlE. Spring AOP % il L T(RFIZ @Configurable), Clock #[AIBEEFRIZIEA LT,

Case 4 Scala Direct Communication [simulation/scala/multi/adv]

This is Scala version for Case 3. Control and signal are received by one queue.
Signal is separated and saved to a list at reading the queue. Because multi threads

access the list, we must synchronize the list. Next, we compare Case 3 and Case 4.

Case 3 # Scala ICEZXELEZLOTHS, ZZTlE, fl#lEETEZ1OoOF2—T%
BT 5, Fa—mbaAtLizsE FEE2Y AN, ZOU A MNIEEDO AL v
RWBT 7 AESND O THMUENLIETH S, Case 3,4 HLHERL TELET S,

1. Code Length

1. =— K&
1) List operation
1) List #fE

[Javal

if(control instanceof Ping) 1
Ping ping =(Ping)control;
List<Signal> todo = new ArrayList<Signal>();
for(Iterator<Signal> i = signals.iterator(); i.hasNext();) {
Signal signal = i.next();
if(signal.getTime() <= ping.getTime() {
} todo.add(signal);

}
int delay = 0;
if(todo.size() > 0) {
for(Signal signal: todo) 1
signals.remove(signal);

Collections.sort(todo);

for(Signal signal: todo) 1
int t = receive(signal);

} if(t > delay) delay = t;

§
send(control.getSource(), new Pong(control.getTime(), delay));

[Scalal
case Ping(source, time) =>
var todo: List[Signall = List()
signals.synchronized {
val todo = signals.filter(_.time <= time)
if('todo.isEmpty) signals = signals.filter(_.time > time)
§
val delay = (0 / todo.sort((a,b) => a.time < b.time))
((m, signal) => max(m, receive(signal)))
source ! Pong(this, time, delay)

2) POJO

[Javal
protected abstract class Message implements Comparable<Message> {
private int time;
Message(int time) {
} this.time = time;
int getTime() {
return time;

}

Simulant getSource() {
return Simulant.this;

§
public int compareTo(Message that) {
return this.time - that.time;

}
H

[Scala]

sealed abstract class Message(val source:Simulant, val time: Int)

2. OOP vs. Functional programming

This problem is suitable to OOP. Because, it is message passing model between
objects. Large scale structures (principal classes) are designed by OO. Functional

programming is efficient at method and block level.

2. A7V = MEMT R 7T L LB T 0 T A

COMBICELTIEA 7 V27 MEITA v E—VBETH2ET LD T,
TV — g ORP(FEE Y 7 2347V =7 MR X VREF LT,
Ay BTy 7 LoV OFRIEZIFREIER T a 7T AR TH o7,

[1] Programming in Scala: A Comprehensive Step-by-step Guide
Martin Odersky,Lex Spoon,Bill Venners, 2009, artima

[1] TScala A7 —F 7 Fmr 77|
Martin Odersky, Lex Spoon, Bill Venners
RER. PIERERE
AT VAT xR 2009/09

We have not any responsibility for this article and simulation.zip.
AL E simulation.zip (IZOWTWRDELEZHA I O TIER,
Java and all Java based trademarks and logos are trademarks or registered trademarks of Sun

Microsystems, Inc. in the U.S. and other countries.
Java ICEAT 2 £ TOEEIX. KE Sun Microsystems, inc DXEH L UVZFDMDOEIZHITHEEE-(TE
BREETY, TOMOEHA. EREB LU —ERE, TR ENEHOBEEILEHKEIZTY,

